浅谈非洲猪瘟暴发四年来对我国养猪业 的影响

刘志伟 1, 肖 军 2, 罗 华 3, 李金波 3, 刘明辉 4

(1.武汉市动物疫病预防控制中心, 湖北 武汉 430014; 2.中元牧康(武汉)检测技术服务公司, 湖北 武汉 430014; 3.宜城市农 业综合执法大队,湖北 宜城 441400; 4.通辽市扎鲁特旗动物疫病预防控制中心,内蒙古 通辽 029100)

1 非洲猪瘟概述

1.1 非洲猪瘟临床症状

2018年8月,非洲猪瘟传入我 国,临床最急性型、急性型的发病 率和死亡率近乎100%,是养猪业 的头号杀手。非洲猪瘟的临床症状 和解剖症状都非常明显,发病猪只 的体温在41~42℃之间,皮肤与 脂肪均可能出现黄染现象, 呼吸困 难,不愿运动,血便。部分发病猪 只站立不稳, 出现倒地抽搐、四肢 呈划水状等神经症状。脾脏肿大, 呈紫褐色,约为正常脾脏的4~5 倍。肺部支气管内有大量淡黄色渗 出液。病死猪血液凝固不良, 腹腔 有大量血红色积液。肾脏肿大,肾 乳头肿大,见淡黄色胶冻样渗出物。

1.2 非洲猪瘟疫苗研究

非洲猪瘟传入我国以来, 其病 毒不断进化,在传播过程中发生了 生物学属性的变化。2020年6-12 月,中国农业科学院哈尔滨兽医研 究所有关科研人员对中国7个省份 (黑龙江、吉林、辽宁、山西、内蒙古、 河北、湖北)进行了非洲猪瘟病毒 监测, 共分离出22株病毒, 均为 基因Ⅱ型,与我国最早发现的毒株 Pig/HLJ/2018 (HLJ/18) 相比,均存 在不同程度的变异。其中11株病毒 在 EP402R 基因 (编码 CD2v 蛋白) 上有不同形式的变异或缺失,且表 现为非红细胞吸附 (non-HAD)。

非洲猪瘟疫情的发生与发展, 促使国内多家科研机构进一步加大 了对非洲猪瘟病毒疫苗的研发力 度,市场上一度出现了基因缺失 株疫苗, 但免疫效果欠佳, 特别是 2022 年越南非洲猪瘟疫苗流入我 国,导致国内多家猪场内出现基因 缺失毒株,使得非洲猪瘟疫情防控 猪业产生了深远影响,主要表现在 难度进一步加大。目前,通过病毒 分离,发现有基因缺失毒株与Ⅱ型 毒株重组的一种新型毒株。因此, 从理论上讲, 我国非洲猪瘟病毒存 在4种毒株,即Ⅰ型毒株、Ⅱ型毒株、 基因缺失毒株、重组毒株。

1.3 非洲猪瘟流行现状

近年来,笔者通过对实验室检 测数据进行分析, 以及从笔者服务 过的生猪养殖场户反应来看, 当前 非洲猪瘟流行毒株主要是临床表现 温和的Ⅱ型毒株与重组毒株,临床 表现为最急性型与急性型的I型毒 株极少出现, 非洲猪瘟的发病率和 死亡率降低了很多, 死亡率一般不 超过30%。目前,有很多非洲猪瘟 阳性猪群没有出现临床症状, 甚至 母猪也未出现繁殖障碍。 究其原因,

主要是这些猪场加强了猪群的饲养 管理(减少了应激),强化了猪群的 基础免疫,提供了营养全面的日粮, 加强了猪群的防疫保健。因此,在 后非洲猪瘟时期, 非洲猪瘟防控已 进入常态化, 猪场务必要从以上的 各个方面加强猪场管理, 确保猪场 安全生产。

2 非洲猪瘟对我国养猪业的影响

非洲猪瘟发生以来,对我国养 以下3个方面:一是对生猪养殖模 式的影响, 二是对猪周期的影响, 三是对猪病防控的影响。

2.1 对养殖模式的影响

2.1.1 区域布局上的变化

2014年至2017年,我国生猪 养殖业出现了"南猪北养"的趋 势。近几年,国内很多大型农牧集 团在北方圈地建场,目的是利用北 方的土地资源和饲料资源,同时在 一定程度上还能降低南方"季节性 疾病"的发生。由于"南猪北养" 趋势下的产销分离模式不利于非洲 猪瘟疫情的防控, 甚至加剧了非 洲猪瘟疫情的扩散;加上北方尤其 是东北地区生猪养殖规模化起步相 对较晚,疫病防控经验欠缺,产业 抵御疾病的能力不足;因此,虽然 当前北方特别是东北地区新建了一 批猪场,但"南猪北养"趋势已经 终结。

作者简介: 刘志伟, 男, 兽医师, 执业兽医师, 主要从事动物疫病防控与畜牧科技推广工作; 肖军, 男, 兽医师, 执业兽医师,主要从事动物疫病检测与兽医管理工作。刘志伟、肖军为本文同等贡献作者

2.1.2 养殖规模上的变化

2018年,非洲猪瘟疫情在我国 暴发,由于当时猪群的发病死亡率 特别高, 加之生物安全防控意识淡 薄,中小型猪场几乎全军覆没。据 统计, 2018年以前, 20~1000头 的猪场占全国养殖总量的70%左 右。非洲猪瘟在全国蔓延后, 生猪 的存栏量下降了60%, 因此2019 年至 2020 年, 我国生猪养殖利润达 到前所未有的高峰,导致很多大型 集团公司加大了生猪养殖投入:同 时也吸引了一部分财团开始规模化 养殖扩张, 很多因暴发非洲猪瘟疫 情而关闭的猪场开始复养。2020年 上半年, 我国母猪存栏量已恢复到 2017年的水平。养殖量的增长导致 猪价从2021年开始出现下跌,加 上饲料原材料价格上涨以及防控成 本增加, 许多中小型猪场再次受到 巨大冲击,直至退出生猪养殖产业。 目前,我国2000头以上的大型生 猪养殖场占生猪养殖总量的67%左 右,500~2000头的猪场占生猪养 殖总量的20%左右,我国生猪养殖 规模化程度得到进一步提高。

近几年,规模猪场在环保、生 物安全、饲养管理、技术管理上更 加科学合理, 在猪场的智能化建 设上的投入力度加大,预计这种 结构模式将是我国未来长期的一种 模式。

2.2 对猪周期的影响

自 2001 年以来, 我国已经历 5 轮完整的猪周期,持续时间通常在 47 个月左右, 仅 2001 至 2006 年的 猪周期持续时间较长,达到59个月 (见表 1)。

从表1中可以看出,第一轮的 猪周期持续时间较长, 究其原因主

要是2016年的高致病性猪蓝耳病 (俗称"高热病")导致母猪存栏量 急剧下降造成的。其他四轮的猪周 期大体有规律可循, 中小规模养殖 场及散养户主导市场。2016年以来, 国家更加关注环境保护, 加大了对 畜禽养殖业污染整治, 很多省市进 行了"三区"(适养区、限养区、禁 养区)划定;加之2018年以来非洲 猪瘟在我国的发生与发展, 国内生 猪养殖结构发生了较大变化, 中小 规模猪场及散养户所占比例进一步 减少,有些地区的散养户甚至退出 了养殖, 使得我国生猪养殖规模化 程度进一步提高, 养殖门槛也得以 提高。随着畜牧行业外资金的注入、 高新技术的发展,集约化、数字化、 智能化猪场将占据生猪行业的主导 市场。当前,生猪养殖企业逐渐由 过去单一的生猪养殖逐渐向产业链 纵深发展,提高了抵御市场风险的 能力;同时,高科技的注入使得生 猪养殖企业可以对市场做出科学的 预测, 适时调整养殖规模, 有效应 对猪周期带来的冲击。综上所述, 未来猪周期在生猪养殖行业中所起 的作用将逐渐减弱。

2.3 对猪病防控的影响

响主要体现在生猪养殖从业者生物 安全意识的提高。2018年以前,猪 病具有明显的季节性和周期性,如 夏季的附红细胞体、弓形体等;特 别是猪蓝耳病、腹泻、口蹄疫等, 是制约猪场养殖效益的三大疾病。 非洲猪瘟发生以后, 生猪养殖从业 者的生物安全意识得到极大提高。 相较于非洲猪瘟发生以前, 很多猪 场建立了洗消中心、人员隔离中心、 物料消毒中心等设施, 各种生物安 全制度更加科学。

2.3.1 建立多级洗消

根据洗消点与猪场生产区之间 的距离可将洗消点分为1~4级, 各生猪养殖企业可根据现实需要设 置不同级别,但最少应设置3个级 别(二级、三级、四级), 洗消点建 设位置要求详见表 2。

2.3.2 实行统一配餐

餐食也是猪病传播的一条途 径。非洲猪瘟发生以来,很多猪场 非常关注员工的餐食问题,建立了 中央厨房,有效切断了非洲猪瘟通 过餐食传播的传播途径。中央厨房 一般距猪场 3 km 左右, 负责场内人 员餐食供应,食材由专人采购,餐 食做好后进行分餐。中央厨房一般 非洲猪瘟对我国猪病防控的影 由食材进入口、仓库、冷库、厨房、

表 1 2001年以来 6 轮猪周期对比

	开始时间	结束时间	上涨月数 / 个	下跌月数 / 个	持续月数 / 个
第一轮	2001.6	2006.5	45	14	59
第二轮	2006.6	2010.5	21	26	47
第三轮	2010.6	2014.3	15	30	45
第四轮	2014.4	2018.4	25	23	48
第五轮	2018.5	2020.6	25	24	49
第六轮	2020.7	?	?	?	?

表 2 猪场各级洗消点设置

	一级洗消点	二级洗消点	三级洗消点	四级洗消点
设置点位置	猪场外围	猪场外围	场外转猪台	场内出猪台
与生产区距离	距生产区至少 3 km	距生产区 1 \sim 2 km	距生产区至少 500 m	常年季风下风向位置

厨师、厨师宿舍、更衣室、餐食出口等部分构成,在食材入口及餐食出口处设置车辆洗消点、人员消毒通道等。

2.3.3 强化门卫管理

猪场人口是猪场生物安全的一 道重要防线,因此,要配备专人落 实门卫制度,切实做好人场的人员、 物质、饲料等管理。制定门卫制度, 并将门卫制度落实情况纳人绩效考 核,督促门卫落实防控措施。所有 人场人员、物质、饲料等都要按照 门卫指令做好洗消才能按照指定路 线进入相应区域,不得随意更改既 定路线。

2.3.4 建立无害化处理区


无害化处理区应建在猪场生产 区常年风向下风向,猪场生产过程 中产生的需要无害化处理的废弃物 主要有病死猪、胎衣、粪便、污水 和废气等。根据废弃物理化性质特 点,配套相应的设施设备,如粪便 堆肥发酵处理区、沼气池、沉降池、 固液分离机、雨污分流管道、焚烧炉、 高温生物发酵和化尸池等。

2.3.5 细化引种流程

在猪场生产过程中,引进优质种猪是猪场进一步发展的重要措施。当前,引进种猪一般需要以下几个流程:(1)制定引种计划;(2)做好引种准备;(3)规划引种路线;(4)安排引种车辆;(5)强化运输管理;(6)安排专人接猪;(7)做好隔离驯化。

非洲猪瘟发生以来,猪场在环 保、生物安全、饲养管理、技术管 理上更加科学合理, 猪场智能化水 平不断提高, 生猪养殖门槛得以提 升。猪场生物安全意识淡薄的散养 户和中小猪场逐渐退出生猪养殖, 这对提升我国生猪养殖水平无疑是 一件好事。猪场生物安全体系的建 立,可有效阻断多种病原微生物, 困扰我国养猪业多年的猪蓝耳病、 腹泻和口蹄疫等疾病得到了较为有 效的控制,也为猪场进行疾病防控 与净化创造了有利条件。同时,一 些新兴产业和产品应运而生, 如病 死猪无害化处理公司、高效消毒剂、 冷鲜肉物流、动物源性蛋白替代品、 非洲猪瘟检测和防控制剂等, 为提 升我国养殖环境和生物安全水平创 造了良好契机。

(收稿日期:2022-11-25)

